Wuhan Ligong Daxue Xuebao (Jiaotong Kexue Yu Gongcheng Ban)/Journal of Wuhan University of Technology (Transportation Science and Engineering)

About the Journal

[This article belongs to Volume - 47, Issue - 03]

Abstract :

Researchers have always been concerned about collision risks between ships and structures on busy waterways, as the consequences can be catastrophic. The models for determining the probabilities of these accidents, however, vary widely, with discrepancies between different model results in the same assessment. The models sometimes lack critical elements or are inherently flawed, and therefore do not represent reality. This paper aims to review the existing probabilistic risk models for ship and structure collisions. The advantages and disadvantages of each model are discussed, which leads to a better method for future model development. This paper reviews the existing literature for the probabilistic risk assessment (PRA) between nautical traffic and offshore infrastructures. This paper differentiates the existing models into three categories: statistics of collision rates, statistical models, and simulation models, as the models are evolving from statistical models to simulation models to derive more accurate results. The advantages and disadvantages of the statistical models were evaluated by comparing the details of the elements contributing to risk. Simulation models with virtual autonomous ships can better reflect the reality and include more risk elements than those described in the existing models. The cores of simulation models and the advantages of different models are elaborated and compared, thus supporting future work in this area.