Wuhan Ligong Daxue Xuebao (Jiaotong Kexue Yu Gongcheng Ban)/Journal of Wuhan University of Technology (Transportation Science and Engineering) was originally founded in 1959. The publisher of the journal is Wuhan University of Technology. JWUT first got the scopus license in the year 2001. The journal generally publishes all aspect of engineering sciences like: physics, chemistry, mathematics, and all sorts of general engineering.
Wuhan Ligong Daxue Xuebao (Jiaotong Kexue Yu Gongcheng Ban)/Journal of Wuhan University of Technology (Transportation Science and Engineering) (ISSN:2095-3844) is a peer-reviewed journal. The journal covers all sort of engineering topic as well as mathematics and physics. the journal's scopes are in the following fields but not limited to: :
Hydrodynamic modeling is the basis of the precise control research of underwater manipulators. Viscous hydrodynamics, an important part of the hydrodynamic model, directly affects the accuracy of the dynamic model and the control model of the manipulator. Considering the limited research on viscous hydrodynamics of underwater manipulators and the difficulty in measuring viscous hydrodynamic coefficients, the viscous hydrodynamic model in the form of Taylor expansion is analyzed and established. Through carrying out simulation calculations, curve fitting and regression analysis, positional derivatives, rotational derivatives, and coupling derivatives in the viscous hydrodynamic model, are determined. This model provides a crucial theoretical foundation and reference data for subsequent related research.
Soft soil generally has a high water content, and the accurate quantification of its mechanical parameters is an important aspect of foundation design and disaster prevention. The mechanical parameters of soft soil have significant spatial variability or heterogeneity due to the complex deposition process of soil, leading to the high uncertainty of the quantifications of its parameters. Therefore, understanding the spatial variability of the parameters is an important approach to reduce uncertainty. In this study, the high-resolution (0.1 m) tip resistance (qc) and side friction (fs) of 18 soft soils in coastal areas were measured using the Dual-bridge CPT in-situ test. The vertical and horizontal variabilities of qc and fs were investigated using the random field theory. The results showed that both qc and fs are stationary and ergodic. The coefficient of variation of vertical fs is much higher than that of qc. On the one hand, fs may be vulnerable to noise, and its test accuracy is lower than qc; on the other hand, it may be that the spatial variability of the residual strength of soft soil may be greater than that of its failure strength. The horizontal correlation distance and coefficient of variation of qc and fs have no obvious change trend along the depth direction, but compared with the coefficient of variation curve, it was found that the change trends of qc and fs are basically the same, which is considered to be related to the properties of the soil layer. The research results can provide support for the spatial variability evaluation and reliability analysis of soft-soil engineering in this area. At the same time, it can also provide a theoretical basis for the layout of exploration engineering and sampling spacing.
The analysis of the influence of hull deformation on shaft alignment is predominately conducted using the finite element method (FEM), which is time-consuming, labor-intensive, and challenging to use for iterative hull design optimization. In this paper, hull deformation is separated into two parts—global deformation and local deformation, simplified to a single-span beam model and a grillage beam model, respectively—then solved using the matrix displacement method (MDM). Compared to FEM, the proposed method has a small calculation error, proving its correctness, while the calculation time is greatly reduced. The proposed method has been used to calculate the hull deformation of a ship under various conditions and evaluate its influence on shaft alignment. The results indicate that under certain conditions, the bearing reaction forces are constant, whereas the bearing pressure changes as a consequence of the change in shaft-to-bearing angle. The comparison between local rotation and shaft-to-bearing angle reveals that bearings in various positions follow distinct laws. We suggest that the shaft-to-bearing angle be used as an additional parameter in the evaluation of shaft alignment calculations. Moreover, when optimizing bearing pressure, bearings in different positions are affected differently by global and local deformation, and their optimization priorities are distinct.
Aircraft departures often follow standardized and restrictive routes intended to guarantee a safe transition to the en-route network. Since the procedures must take the flight performance of many aircraft types into account, they represent a compromise between numerous optima and must be consistent with noise abatement strategies. This paper investigates the concept of departure funnels, in which flights can adopt their optimal profile within a procedural space based on actual flight performance to replace standard routes. For this, an algorithm based on DBSCAN identifies typical traffic flow funnels for a set of radar tracks as reference and individually optimized flight trajectories as preferred funnels. For the latter, an innovative 3D pathfinding grid is developed, which expands dynamically using the specific flight performance of the aircraft type and enables evaluation of operating costs due to wind and fuel consumption. From the clustered traffic flows, a funnel starting at the runway is determined based on the variance of the flight profiles along their mean trajectory. This funnel provides a restricted space for individual trajectory optimization for the day of operation. The procedure is applied using the example of Munich Airport, where the funnel size and the associated fuel-saving potential are determined. The results indicate an average fuel-saving potential of 0.4% with respect to the trip fuel.
This study focuses on producing asphalt with improved rheological properties that differ from the original asphalt and are less affected by aging conditions. The rheological properties of Qayara asphalt were enhanced by modifying the asphalt using spent rubber tire (SRT) with different percentages of anhydrous aluminum chloride. Percentages ranging from 1.0% by weight of the spent tire rubber were added after proceeding with the thermal crushing process. The percentages of anhydrous aluminum chloride catalyst were 0.4 and 0.8%, respectively. This mixture was microwaved at 270 watt of power for 4, 8, and 12 min, respectively. The measurements performed are plasticity, penetration, softening point, and penetration index. The previously mentioned measurements were also made on the modified asphalt one year after the modification process to understand the effect of aging conditions. The microstructure and thermodynamics have been characterized by FE-SEM and EDX measurements. This study provides good rheological properties of the modified bitumen binder that is aging-resistant.
Due to the complexity of pile–soil interaction, there is little research on active–passive piles that bear the pile-top load transmitted from the superstructure and the pile shaft load caused by the lateral soil movement around the pile simultaneously. The purpose of this study is to analyze the displacement and internal force of active–passive piles. Most of the pile design codes in China use the elastic resistance method to describe the relationship between the lateral soil resistance and the horizontal displacement of the pile, but this is not accurate enough to analyze the internal force and deformation of the pile when the pile displacement is large. For this case, the passive load on the pile shaft caused by the adjacent surcharge load can be described in stages, and the p–y curve method can be used to express the relationship between the lateral soil resistance and the horizontal displacement of the pile. Additionally, taking both the active load (vertical force, horizontal force, and bending moment on the pile top) and the passive load into account, the deflection differential equation of the pile shaft is herein established, and a corresponding finite difference method program is implemented to obtain the calculations pursuant to the equation. The correctness of the analysis method and program was verified by two test cases. The results show that our calculation method can effectively judge the flow state of the soil around piles and accurately reflect the nonlinear characteristics of pile-soil interaction. Moreover, the influence depth of the pile displacement under the passive pile condition caused by the adjacent load is significantly greater than that under active pile condition, and the maximum pile-bending moment appears near the interface of soft and hard soil layer.
Vibration of manufacturing machine parts can be reduced by applying CFRP to precision machines. Recently, the use of 3D printers in manufacturing has increased. However, there are few studies on the vibration characteristics of 3D printed composite materials. The objective of this study is to analyze the vibration reduction effect of a 3D printed composite material used as a CFRP chuck adapter. The existing chuck adapter is made of steel. In this study, the vibration values for three types of CFRP, steel, and CFRP with steel chuck adapters are compared. The products were rotated at 10, 500, and 1000 rpm, and the vibration velocity and displacement were calculated as an average value after repeating each measurement 5 times. Vibration velocity was improved by up to 64% and displacement by up to 31.1%. These results can be usefully applied to other mechanical parts requiring vibration damping.
To solve the problems of congestion and accident risk when multiple vehicles merge into the merging area of a freeway, a platoon split collaborative merging (PSCM) method was proposed for an on-ramp connected and automated vehicle (CAV) platoon under a mixed traffic environment composed of human-driving vehicles (HDV) and CAVs. The PSCM method mainly includes two parts: merging vehicle motion control and merging effect evaluation. Firstly, the collision avoidance constraints of merging vehicles were analyzed, and on this basis, a following–merging motion rule was proposed. Then, considering the feasibility of and constraints on the stability of traffic flow during merging, a performance measurement function with safety and merging efficiency as optimization objectives was established to screen for the optimal splitting strategy. Simulation experiments under traffic demand of 1500 pcu/h/lane and CAV ratios of 30%, 50%, and 70% were conducted respectively. It was shown that under the 50% CAV ratio, the average travel time of the on-ramp CAV platoon was reduced by 50.7% under the optimal platoon split strategy compared with the no-split control strategy. In addition, the average travel time of main road vehicles was reduced by 27.9%. Thus, the proposed PSCM method is suitable for the merging control of on-ramp CAV platoons under the condition of heavy main road traffic demand.
Changes in loading position have a significant impact on the stress field of each vulnerable area of an orthotropic steel deck (OSD). The arc opening area of the diaphragm and the connecting area between the U-rib and the diaphragm under the moving load are prone to fatigue cracking. By comparing the stress responses under different methods, the hot spot stress (HSS) method is used as the main stress extraction method in fatigue performance evaluation. The control stress of fatigue cracking was analyzed by comparing the direction of the principal stress field with the crack direction in this experiment. According to the stress amplitude deviation under the biaxial stress state, a set of methods for evaluating the effects of in-plane biaxial fatigue was developed. An improved luffing fatigue assessment S–N curve was applied to analyze the fatigue life of the diaphragm’s arc opening area. The results show that when the moving load is exactly above the connection of the deck and the web of the U-rib on one side, it is in the most unfavorable position in the transverse direction, and the diaphragm is mainly under the in-plane stress state. The longitudinal range of the stress influence line of the arc opening is approximately twice the diaphragm spacing. Two to three stress cycles are caused by one fatigue load. Fatigue crack control stress is the principal stress tangential to the arc opening’s edge in this area. The normal direction of the principal stress in the model test is roughly consistent with the crack initiation direction. The variation in the stress amplitude deviation in this area is caused by changes in the action position of the moving load. When the moving load is at a certain distance from the involved diaphragm, it is reduced to zero, implying that the in-plane fatigue effect is the greatest in this area.
The increase in traffic in cities world-wide has led to a need for better traffic management systems in urban networks. Despite the advances in technology for traffic data collection, the collected data are still suffering from significant issues, such as missing data, hence the need for data imputation methods. This paper explores the spatiotemporal probabilistic principal component analysis (PPCA) based data imputation method that utilizes traffic flow data from vehicle detectors and focuses specifically on detectors in urban networks as opposed to a freeway setting. In the urban context, detectors are in a complex network, separated by traffic lights, measuring different flow directions on different types of roads. Different constructions of a spatial network are compared, from a single detector to a neighborhood and a city-wide network. Experiments are conducted on data from 285 detectors in the urban network of Surabaya, Indonesia, with a case study on the Diponegoro neighborhood. Methods are tested against both point-wise and interval-wise missing data in various scenarios. Results show that a spatial network adds robustness to the system and the choice of the subset has an impact on the imputation error. Compared to a single detector, spatiotemporal PPCA is better suited for interval-wise errors and more robust against outliers and extreme missing data. Even in the case where an entire day of data is missing, the method is still able to impute data accurately relying on other vehicle detectors in the network.
Copyright © 2022 All rights reserved | Wuhan Ligong Daxue Xuebao (Jiaotong Kexue Yu Gongcheng Ban)
/Journal of Wuhan University of Technology (Transportation Science and Engineering)